Bio

EIP-Projekt "KLIWA"

Klimaresilienz durch wassersparenden Bio-Ackerbau

Andreas Surböck und Gabriele Gollner Institut für Ökologischen Landbau (IFÖL), BOKU

BioNet-Ackerbautag, 12.01.2021, Webinar

Mit Unterstützung von Bund, Ländern und Europäischer Union

Bundesministerium Landwirtschaft, Regionen und Tourismus

Inhalte

- Problemstellung / Hintergrund Projekt
- Akteure Projekt KLIWA
- Beschreibung der Verfahren (Direktsaat, Transfermulch)
- Übersicht Versuche (Mais, Soja, Kartoffel)
- Vorteile und Herausforderungen der Verfahren, erste Ergebnisse
- Vorläufiges Fazit

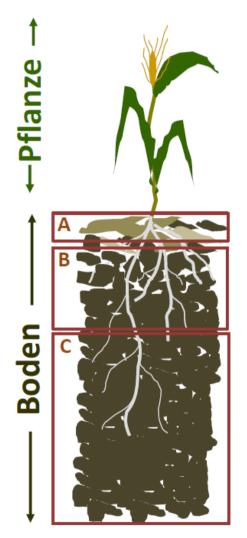
Problemstellung/Hintergrund

Ackerbau im Klimastress

- Längere Trockenphasen → Wassermangel
- Extremere Temperaturen

 hohe unproduktive Verdunstung
- Starkniederschläge nehmen zu → Oberflächenabfluss, Erosion
 - → Ertragsrückgänge (häufig Sommerkulturen betroffen)!
 - → für Ertragssicherung:

Sorgsamer Umgang mit dem zur Verfügung stehenden Wasser notwendig!


Projektziel:

Prüfung von verschiedenen Strategien zur Anpassung an die Auswirkungen des Klimawandels im Ackerbau und zur Verbesserung des Wasserhaushaltes.

Wichtige Stellschraube:

Boden als Puffer für die Wasserversorgung der Pflanzen!

Wassersparende Maßnahmen

Pflanze:

Bestandesetablierung: Saatzeitpunkt, Bestandesdichte

Art/Sorte: Fruchtfolge, Sortenwahl

	A: Boden- oberfläche	B: Oberboden	C: Unterboden
Beein- flussbar:	Stark (kurzer Zeitraum)	Mittel (längerer Zeitraum)	Gering (natürliche Bodeneigen- schaften)
Funktion:	Evaporation Oberflächen- abfluss Infiltration	Wasserinfiltration und -speicherung	Wasser- speicherung
Manage- ment:	- Sätechnik (Direktsaat,) - Transfermulch - Fruchtfolge	Boden- bearbeitungOrg. DüngungFruchtfolge	z.B.: Kulturart (Wurzeltiefe)

Quelle Abbildung und Tabelle: G. Bodner, 2018, verändert

Institutionen/Akteure – Projekt KLIWA

Laufzeit: 04/2019-03/2022

BIO AUSTRIA NÖ und Wien *Projektleitung* BOKU -IFÖL Projektkoordination

7 Bio-Betriebe aus NÖ (Weinviertel, Tullnerfeld) Bundesversuchswirtschaften GmbH (Marchfeld, NÖ)

Bio-Praxisversuche:

Direktsaat (2019-22) Transfermulch (2019-22)

Bio-Langzeitversuch:

Org. Düngungssysteme (seit 2003) Red. Bodenbearbeitung (seit 2016)

Weitere Partner:

Hammerschmied GmbH, Landtechnik Stöckel, Rodale Institut, Biorama

Verfahren Direktsaat Sojabohnen

Fotos: A. Surböck

Winterharte Zwischenfrucht: Grünschnittroggen

Walzen mit Roller Crimper und Direktsaat Soja (zu Vollblüte Roggen)

Boden- und Verdunstungsschutz

Aufgang durch Roggenmulch

Keine Beikrautregulierung

Verfahren Direktsaat Körnermais

Fotos: A. Surböck, G. Gollner

Winterharte Zwischenfrucht: Wickroggen

Walzen mit Roller Crimper und Direktsaat Körnermais (zu Vollblüte Wickroggen)

Boden- und Verdunstungsschutz

Aufgang durch Wickroggenmulch

Keine Beikrautregulierung

Verfahren Transfermulch Körnermais

Fotos: A. Surböck

Häckseln Luzerne am Geberfeld

Ausbringung Transfermulch am Nehmerfeld Körnermais

Boden- und Verdunstungsschutz Mit Beikraut-Regulierung

Versuche Projekt KLIWA:

Weiterentwickeln, Optimieren und Prüfen der Systeme

- Erfahrungen aus Vorprojekt (Direktsaat Sojabohnen) und aus eigenen Versuchen von Landwirten (Transfermulch K\u00f6rnermais)
- Vorversuche 2019 Projekt KLIWA zu Sojabohnen und Körnermais:
 - Welche Zwischenfrüchte (Sorten, Arten, Biomasse, Blüte, ...)?
 - Welche Anbauzeitpunkte Direktsaat Hauptkultur?
 - Welche Saattechnik Direktsaat Hauptkultur?
 - Welche Ausbringungszeitpunkte Transfermulch?

Versuche
Sojabohnen:

Jahre:

2020 u. 2021

Versuche/Betriebe:

3

Varianten		
1	Betriebsüblich	
	Direktsaat –	
2	früher Termin	
	Direktsaat –	
3	später Termin	

Versuche Körnermais:

Jahre:

2020 u. 2021

Versuche/Betriebe:

4

Varianten	
1	Betriebsüblich
2	Direktsaat
3	Transfermulch

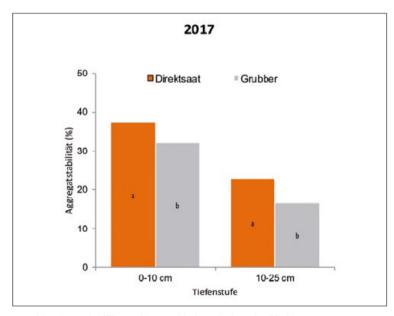
Versuche Transfermulch Kartoffel

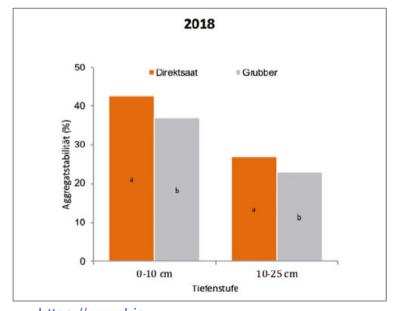
Versuche Kartoffeln:

Jahre: 2020 u. 2021 Versuche/Betriebe: 3

Fotos: A. Surböck

	a Militari C	
	we kind her - solet a con - 10.5	
图》零	mr A	

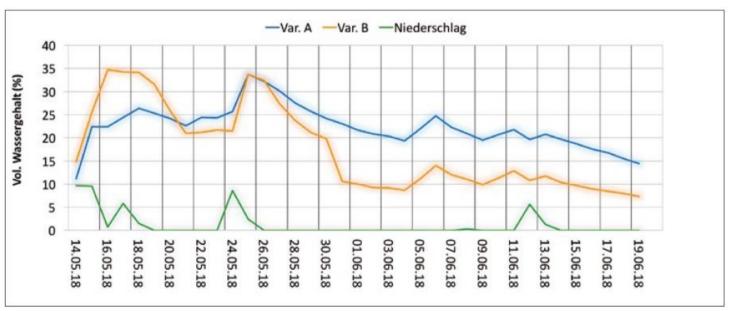

Varianten		
1	Betriebsüblich	
2	Transfermulch Wickroggen	
3	Transfermulch Luzerne	


Vorteile / Nutzen Direktsaat

- Maximaler Boden- und Erosionsschutz (lange Bodendeckung)
- Gute Bedingungen für Bodenlebewesen
- Hohe Biomasseinput über die Zwischenfrucht, bei Wickroggen auch N-Input
- Verbesserung der Bodenstruktur:
 Ergebnisse aus Vorprojekt BIOBO Direktsaat Soja (Standort Absdorf, Tullnerfeld)

ANTEIL STABILER AGGREGATE IM BODEN (IN %), 2 TIEFENSTUFEN, JUNI 2017 (LINKS) – JUNI 2018 (RECHTS)

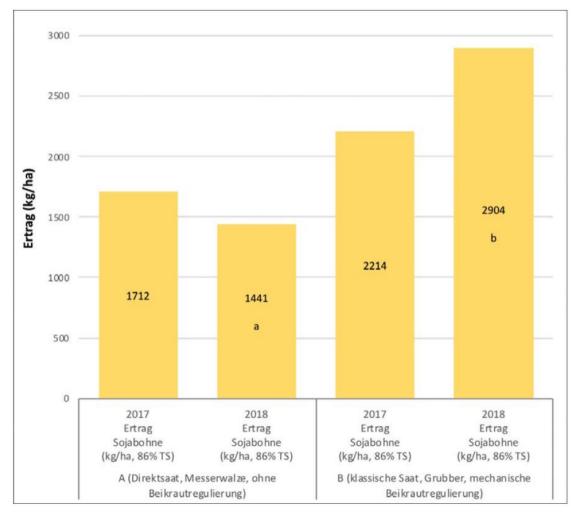
a und b zeigen signifikante Unterschiede zwischen den Varianten an



https://www.bio-austria.at/app/uploads/2020/02/BIOBO_Broschuere.pdf

Vorteile / Nutzen Direktsaat

- Wenig Überfahrten keine Beikrautregulierung geringer Bodendruck reduzierte Arbeits- und Maschinenkosten
- Geringere Bodentemperaturen
- Höhere Wasserinfiltration und reduzierte unproduktive Verdunstung:
 Ergebnisse aus Vorprojekt BIOBO Direktsaat Soja (Standort Absdorf, Tullnerfeld)
 Var. A: Direktsaat, Aussaat 14.5.18; Var. B: Betriebsüblich, Aussaat 9.5.18


VOLUMETRISCHER BODEN-WASSERGEHALT (IN %) IN 0-5 CM TIEFE IM FRÜHLING 2018

https://www.bio-austria.at/app/uploads/202 0/02/BIOBO_Broschuere. pdf

Herausforderungen Direktsaat

Ergebnis aus Vorprojekt BIOBO Direktsaat
 Soja: Erträge Jahr 2017 und 2018

- Geringere Erträge bzw.
 Ertragsausfälle möglich
- Mögliche Ursachen:
- Späterer Saattermin
- Hoher Wasserverbrauch durch die Zwischenfrucht
- Keine geeignete Saattechnik
- Kein bzw. geringer Aufgang
- Hoher Beikrautdruck
- Hoher Wilddruck (Hasen, Mäuse, ...)

https://www.bio-austria.at/app/uploads/2020/02/BIOBO_Brosch uere.pdf

Voraussetzungen Direktsaat

- Geeignete Zwischenfrucht
- Anbauzeitpunkt der Zwischenfrucht und Saatmenge
- → Entsprechend hohe Biomasse zum Zeitpunkt des Umwalzens (> 5 t TM/ha, bisherige Erfahrungen: 4 – 13 t TM/ha)
- Quetschwalze (Roller Crimper) oder Messerwalze Zwischenfrucht in Fahrtrichtung umlegen
- Richtiger Zeitpunkt des Umwalzens
- Professionelle Saattechnik für Direktsaat (hoher Schardruck: >200 kg je Schar)
- Höhere Saatmengen Hauptfrucht (+20 %),
 Sorte mit rascher Jugendentwicklung
- Kein Hacken und Striegeln möglich Möglichkeit einer Regulierung nach der Saat prüfen (Reihenmulcher)
- Ausreichende Niederschläge für die Hauptkultur

Vorteile / Nutzen Transfermulch

- Boden- und Erosionsschutz
- Höhere Wasserspeicherung, geringere unproduktive Verdunstung
- Geringere Bodentemperatur
- Stickstofftransfer Nährstoffwirkung
- Schutz vor Schädlingen
- Unkrautregulierung
- Breitere Fruchtfolge (Nutzung Luzerne!)
- Höhere Erträge
- Wirkung f
 ür Folgefrucht (N
 ährstoffe, Boden, Wasser)

Ergebnisse Vorversuch Transfermulch Körnermais

(Projekt KLIWA, Jahr 2019, Michelhausen)

- Transfermulch: 5 13 t TM/ha, 4 10 cm Mulchauflage
- 40 60 % der Mulchauflage zur Ernte noch übrig
- Erträge Transfermulch ca. gleich hoch wie betriebsüblich
- Transfermulch gesplittet oder geringere Mengen besseres Ergebnis

Parzelle	System	Mais-Pflanzen (ohne Kolben) 100% TM t/ha	Kornertrag 86% TM, t/ha
1a	Transfermulch (50 % + 50 %)	10,9	13,5
1b	Transfermulch (50 %)	8,9	12,8
2	Betriebsüblich	9,2	13,4
8a	Transfermulch (100 %)	8,5	11,2
8b	Transfermulch (100 %)	8,5	10,7

Fragen / Herausforderungen Transfermulch

- Quantifizierung Wirkung Transfermulch (Wasser, Stickstoff, Ertrag)
- Abstimmung Geber- und Nehmerfeld (zeitlich, Verhältnis)
- Häcksler und Kompoststreuer oder Kurzschnittladewagen
- Menge Transfermulch und Höhe Mulchschicht
- Mulch anwelken oder frisch ausbringen
- Streutechnik große Maschinen mit schmaler Bereifung!
- Anwendungszeitpunkt (in den Bestand, Mais: 20-30 cm Höhe)

Fotos: A. Surböck

Vorläufiges Fazit

Direktsaat Sojabohnen und Körnermais:

- Hat Potential, muss aber noch weiterentwickelt und "sicherer" gemacht werden. Aktuell: Hohes Anbaurisiko!
- Anpassung an regionale Bedingungen!

Transfermulch Körnermais:

- Sehr flexibles System
- Geringes Risiko
- Gegenüberstellung von Aufwand und Nutzen!

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Universität für Bodenkultur Wien

Dr. Gabriele Gollner / DI Andreas Surböck

Tel.: 01-47654-93324 / 93322

Email: gabriele.gollner@boku.ac.at

a.surboeck@boku.ac.at

Link Projekt KLIWA:

https://boku.ac.at/nas/ifoel/arbeitsgruppen/ag-bodenfruchtbarkeit-und-anbausysteme/kliwa